- 1.
Griffin J, Treanor D. Digital pathology in clinical use: where are we now and what is holding us back? Histopathology 2017; 70: 134–45. [PubMed][CrossRef]
- 2.
Pallua JD, Brunner A, Zelger B et al. The future of pathology is digital. Pathol Res Pract 2020; 216: 153040. [PubMed][CrossRef]
- 3.
Den norske patologforening. Årsrapport 2020. https://www.legeforeningen.no/globalassets/foreningsledd/fagmedisinske-foreninger/den-norske-patologforening/arsrapport-dnp-2020_.pdf Lest 28.3.2022.
- 4.
Helsedirektoratet. Leger i kommunene og spesialisthelsetjenesten. Rapport 2020. https://www.helsedirektoratet.no/rapporter/leger-i-kommune-og-spesialisthelsetjenesten/Leger%20i%20kommunene%20og%20spesialisthelsetjenesten%20-%20rapport%202020.pdf/_/attachment/inline/9bcf5459-80e6-4716-ab00-1766ee0cc0db:ac1f2b4e2a8216bf8aa6246e843249ffc49721db/Leger%20i%20kommunene%20og%20spesialisthelsetjenesten%20-%20rapport%202020.pdf Lest 28.3.2022.
- 5.
Laurinavicius A, Laurinaviciene A, Dasevicius D et al. Digital image analysis in pathology: benefits and obligation. Anal Cell Pathol (Amst) 2012; 35: 75–8. [PubMed][CrossRef]
- 6.
Elmore JG, Longton GM, Carney PA et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 2015; 313: 1122–32. [PubMed][CrossRef]
- 7.
Fuchs TJ, Buhmann JM. Computational pathology: challenges and promises for tissue analysis. Comput Med Imaging Graph 2011; 35: 515–30. [PubMed][CrossRef]
- 8.
Zlobec I, Steele R, Michel RP et al. Scoring of p53, VEGF, Bcl-2 and APAF-1 immunohistochemistry and interobserver reliability in colorectal cancer. Mod Pathol 2006; 19: 1236–42. [PubMed][CrossRef]
- 9.
Bui MM, Riben MW, Allison KH et al. Quantitative Image Analysis of Human Epidermal Growth Factor Receptor 2 Immunohistochemistry for Breast Cancer: Guideline From the College of American Pathologists. Arch Pathol Lab Med 2019; 143: 1180–95. [PubMed][CrossRef]
- 10.
Butter R, 't Hart NA, Hooijer GKJ et al. Multicentre study on the consistency of PD-L1 immunohistochemistry as predictive test for immunotherapy in non-small cell lung cancer. J Clin Pathol 2020; 73: 423–30. [PubMed][CrossRef]
- 11.
Aeffner F, Wilson K, Martin NT et al. The Gold Standard Paradox in Digital Image Analysis: Manual Versus Automated Scoring as Ground Truth. Arch Pathol Lab Med 2017; 141: 1267–75. [PubMed][CrossRef]
- 12.
Aeffner F, Zarella MD, Buchbinder N et al. Introduction to Digital Image Analysis in Whole-slide Imaging: A White Paper from the Digital Pathology Association. J Pathol Inform 2019; 10: 9. [PubMed][CrossRef]
- 13.
Janowczyk A, Madabhushi A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J Pathol Inform 2016; 7: 29. [PubMed][CrossRef]
- 14.
Korbar B, Olofson AM, Miraflor AP et al. Deep Learning for Classification of Colorectal Polyps on Whole-slide Images. J Pathol Inform 2017; 8: 30. [PubMed][CrossRef]
- 15.
Nagpal K, Foote D, Liu Y et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digit Med 2019; 2: 48. [PubMed][CrossRef]
- 16.
Ström P, Kartasalo K, Olsson H et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol 2020; 21: 222–32. [PubMed][CrossRef]
- 17.
Steiner DF, MacDonald R, Liu Y et al. Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer. Am J Surg Pathol 2018; 42: 1636–46. [PubMed][CrossRef]
- 18.
Levine AB, Schlosser C, Grewal J et al. Rise of the Machines: Advances in Deep Learning for Cancer Diagnosis. Trends Cancer 2019; 5: 157–69. [PubMed][CrossRef]
- 19.
Maxmen A. Self-driving car dilemmas reveal that moral choices are not universal. Nature 2018; 562: 469–70. [PubMed][CrossRef]
- 20.
Felles nettløsning for spesialisthelsetjenesten. Interregionalt forum for digital patologi. https://spesialisthelsetjenesten.no/interregionalt-forum-for-digital-patologi Lest 10.1.2022.
- 21.
Svanes BJ, Kvien E, Aga E. Nye skjermar skal gjere det raskare å oppdage kreft. NRK 24.11.2021. https://www.nrk.no/vestland/nye-skjermar-skal-gjere-det-raskare-a-oppdage-kreft-1.15742102 Lest 10.1.2022.
- 22.
Mills AM, Gradecki SE, Horton BJ et al. Diagnostic Efficiency in Digital Pathology: A Comparison of Optical Versus Digital Assessment in 510 Surgical Pathology Cases. Am J Surg Pathol 2018; 42: 53–9. [PubMed][CrossRef]
- 23.
Mukhopadhyay S, Feldman MD, Abels E et al. Whole Slide Imaging Versus Microscopy for Primary Diagnosis in Surgical Pathology: A Multicenter Blinded Randomized Noninferiority Study of 1992 Cases (Pivotal Study). Am J Surg Pathol 2018; 42: 39–52. [PubMed][CrossRef]
- 24.
Skrede OJ, De Raedt S, Kleppe A et al. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet 2020; 395: 350–60. [PubMed][CrossRef]
()
Kunstig intelligens er ikke kunstig
28.06.2022Både uttrykket "kunstig intelligens" og "maskinlæring" er villedende begreper. Begge forutsetter programmering. Alle beslutninger som tas "kunstig" er gjort på grunnlag av bedre - eller dårligere - algoritmer skrevet av programmerere - som igjen har fått…