Artikkel
Eva Skovlund har skrevet nok en god og informativ artikkel i Tidsskriftets statistikkspalte (1) . Skovlund viser at dikotomisering av kontinuerlige variabler kan ha en rekke uheldige konsekvenser, hvor en av de viktigste er tap av statistisk styrke. Dette er en velkjent problemstilling (2) . Skovlund påpeker at lav eller dårlig statistisk styrke er en risikofaktor for falske-negative forskningsfunn (type II-feil), og at man feilaktig konkluderer at det ikke er en statistisk signifikant forskjell mellom for eksempel to behandlingsbetingelser. Skovlund unnlater imidlertid å nevne at lav eller dårlig statistisk styrke faktisk også er en risikofaktor for falske-positive forskningsfunn (type I-feil) (3) -(5) , og overestimerte effektstørrelser (6, 7) . Derfor kan dikotomisering av variabler med påfølgende tap av statistisk styrke, kanskje noe paradoksalt, være en risikofaktor for både type I- og type II-feil samt overestimering av effektstørrelser. Det er viktig at klinikere er klar over av studier med lav eller dårlig statistisk styrke risikerer både å feilaktig beholde og forkaste nullhypotesen. Det vil være uheldig om klinikere har et inntrykk av at lav statistisk styrke kun er en risikofaktor for falske-negative forskningsfunn, og at statistisk signifikante funn fra studier med lav statistisk styrke er til å stole på. Studier med lav statistisk styrke bør tolkes særlig varsomt og kritisk – uavhengig av om resultatene er statistisk signifikante eller ei.