Flawed recommendation issued by the Norwegian Directorate of Health concerning the determination of fetal age

In October 2014 the Norwegian Directorate of Health issued its recommendation that one specific ultrasound method, the eSnurra obstetric wheel, must be used throughout the country to determine gestational age and predict pregnancy term. We hold the opinion that this recommendation is medically flawed and that the Directorate has conducted a muddled investigation process.

The autumn of 2014 saw public debate about the appropriate threshold for abortion and gestational age. Gestational age can be determined in a number of ways and ultrasound examination represents an important contribution. In Norway, two methods are in use: the Termihjulet obstetric wheel, developed in Bergen (the Bergen method) by a group that includes some of the authors of this article, and the eSnurra obstetric wheel, developed in Trondheim (the Trondheim method).

Because it was deemed desirable to implement a uniform approach for the whole country, the Norwegian Directorate of Health decreed in a letter to the nation’s health enterprises (1) that the Trondheim method must be the sole tool used to predict pregnancy term and fetal age in Norway. We feel the process has been muddled, and that the Directorate’s decision has been made on grounds that fail to instil confidence. This is not how the Norwegian Directorate of Health should be working.

Running roughshod over medical expertise

The Norwegian Society of Gynaecology and Obstetrics recently reviewed available knowledge about the determination of gestational age. They gave their resulting recommendations in a revised edition of their birthing guidelines for the medical profession, Veileder i fødselshjelp 2014 (2). They recommend routine ultrasound examination in the second trimester, and that the gestational age in cases of in-vitro fertilisation be based on the time of conception. They also recommend that if the gestational age has been determined earlier in the pregnancy, this should never be changed as a consequence of later ultrasound examination. This is entirely in line with international guidelines – and both Norwegian methods are included.

The Directorate of Health has opted to disregard these guidelines by recommending that all pregnancies be dated by applying the Trondheim method in weeks 17–19 of the pregnancy. By doing so, they ignore current national and international medical guidelines. During their investigation process, the Directorate of Health requested the opinion of the Norwegian Knowledge Centre for the Health Services. The centre was unable to contribute to an assessment of the methods and instead referred to a PhD thesis published by the Trondheim Group (3), apparently without first having reviewed the documentation or the criticisms raised (4). The Directorate of Health should have left this job to the medical experts – the patients deserve as much.

Erroneous use of term prediction for fetal age

The Norwegian Directorate of Health chose the Trondheim method, the eSnurra, because they found that this demonstrated the least bias with respect to term prediction – according to the Trondheim Group’s own validation study (3). The group used the size of the fetus at the time of the routine ultrasound examination, and the remaining gestation period, in a model that predicts the date of birth (5). However, the issue at stake is not the accuracy of the predicted date of a normal delivery, it is the accuracy of the fetal age, which is an essential factor in clinical situations throughout the pregnancy.

In order to make an assertion about fetal age it is necessary to know how old the fetus was at the time of the ultrasound examination – an issue which has not been documented by the Trondheim Group. However, they admit that «Our primary focus in this paper has been on prediction of term. It is interesting to note that the approach also provides estimates for gestational age at the time of the ultrasound examination. This can be done by assuming a typical length of pregnancy of, for instance 282 days. For a given BPD or FL value, one can then subtract the predicted remaining time from the total length of 282 days and thus obtain an estimate of gestational age» (5). However, the basis for determining gestational age is not the end of the pregnancy, but its beginning.

This was exactly what the Bergen Group looked at in a prospective study in which they employed internationally recommended standards for design and analysis (6, 7) and compiled reference values for age determination and growth (8–11). This study has been internationally rated as one of the very best (12).

Yet this is not enough for the Norwegian Directorate of Health. Paradoxically, they prefer the Trondheim Group’s retrospective population-based study – which did not determine gestational age – when looking to determine gestational age. The epidemiological Trondheim study included 40,000 pregnancies and the object was to calculate the median date of delivery. The prospective Bergen study included 650 pregnancies and the object was to determine fetal age and growth. The objectives were different, and so the methods were different: epidemiological studies need high numbers, while prospective, longitudinal studies should never include more participants than the number dictated by the strength calculation. The Directorate of Health appears to have been blinded by the large data sample to the extent that they have failed to see the difference between the scientific methods and definitions.

Fetal age, fetal size, length of pregnancy and date of delivery are obviously all related data. However, it is impossible to deduce fetal age routinely from the predicted date of delivery. Only 4 per cent of women give birth at their estimated due date; in order to determine gestational age, it is clearly necessary to take account of the time of
COMMENT AND DEBATE

Cathrine Ebbing, MD, PhD (born 1967), is a consultant and post doc fellow at the Fetal Medicine Unit, Department of Obstetrics and Gynaecology, Haukeland University Hospital. The author has completed the ICMJE form and reports no conflicts of interest.

Synnøve Lian Johnsen MD, PhD (born 1969), is Head of the Fetal Medicine Unit, Department of Obstetrics and Gynaecology, Haukeland University Hospital. She has developed new reference values for fetal age and growth and is part of the team working on WHO’s fetal growth study. The author has completed the ICMJE form and reports no conflicts of interest.

Jørg Kessler, MD, PhD (born 1970) is a consultant at the Department of Obstetrics and Gynaecology, Haukeland University Hospital. He is the principal author of the ultrasound chapter in the birthing guidelines for the Norwegian medical profession, Veileder i fødselsstøt (2014). The author has completed the ICMJE form and reports the following conflict of interest: He is a member of the research group that published the fetal biometry reference tables referred to in this article.

Torvid Kiserud, MD, PhD (born 1944), is a consultant at the Department of Obstetrics and Gynaecology, Haukeland University Hospital, and professor at University of Bergen’s Department of Clinical Science (K2). He headed the research on ultrasound, biometry and age determination conducted in Bergen and acts as external advisor to WHO within the field. The author has completed the ICMJE form and reports the following conflict of interest: He has developed an alternative method to the eSnurra obstetrics wheel, which is currently being recommended by Norwegian health authorities.

Svein Rasmussen, MD, PhD (born 1949), is a consultant and post doc fellow at the Fetal Medicine Unit, Department of Obstetrics and Gynaecology, Haukeland University Hospital. He is a member of the research group that published the birthing guidelines for the Norwegian medical profession. The author has completed the ICMJE form and reports no conflicts of interest.

Synnøve Lian Johnsen MD, PhD (born 1969), is Head of the Fetal Medicine Unit, Department of Obstetrics and Gynaecology, Haukeland University Hospital. She has developed new reference values for fetal age and growth and is part of the team working on WHO’s fetal growth study. The author has completed the ICMJE form and reports no conflicts of interest.

Jørg Kessler, MD, PhD (born 1970) is a consultant at the Department of Obstetrics and Gynaecology, Haukeland University Hospital. He is the principal author of the ultrasound chapter in the birthing guidelines for the Norwegian medical profession, Veileder i fødselsstøt (2014). The author has completed the ICMJE form and reports the following conflict of interest: He is a member of the research group that published the fetal biometry reference tables referred to in this article.

Torvid Kiserud, MD, PhD (born 1944), is a consultant at the Department of Obstetrics and Gynaecology, Haukeland University Hospital, and professor at University of Bergen’s Department of Clinical Science (K2). He headed the research on ultrasound, biometry and age determination conducted in Bergen and acts as external advisor to WHO within the field. The author has completed the ICMJE form and reports the following conflict of interest: He has developed an alternative method to the eSnurra obstetrics wheel, which is currently being recommended by Norwegian health authorities.

Svein Rasmussen, MD, PhD (born 1949), is a consultant and post doc fellow at the Fetal Medicine Unit, Department of Obstetrics and Gynaecology, Haukeland University Hospital. He is a member of the research group that published the birthing guidelines for the Norwegian medical profession. The author has completed the ICMJE form and reports no conflicts of interest.

References

conception. The Directorate of Health have demonstrated their lack of understanding of these differences, and they have failed to appreciate that the Trondheim Group looked only at term prediction (3).

Validation deficiencies ignored
For many years, the precursor to today’s eSnurra, the 1984 Snurra, was the only ultrasound method used in Norway to determine gestational age and predict pregnancy term. It was clear at an early point, however, that this method was encumbered with serious deficiencies with respect to the period before the 17th week of pregnancy. For example, women who were examined in the 14th week of pregnancy would have to return after the 17th week in order to have the gestational age determined. The method was nevertheless disseminated throughout the country for years, without attention being directed to this weakness. The Bergen Group pointed to this problem in 1999 and published their objections to the method (13), and the Norwegian Research Council gave the go-ahead for establishing new reference values for fetal age determination and growth.

The PhD thesis published by the Trondheim Group compares the Trondheim method to the Bergen method, and the authors go out of their way to demonstrate the advantages of the eSnurra (3) obstetrics wheel. The Trondheim Group makes use of their own population, in which their own method has been established, in order to gauge the accuracy of their term predictions. They then go on to use the same population to test the results of the Bergen method.

This procedure provides a flawed basis for comparison of the two methods. It is to be expected that the due date predicted by means of eSnurra and communicated to the women will influence their expectations, treatment and attitudes, as well as those of the health service, so as to converge towards this prediction. Yet we know nothing about the age of the fetus, only about the expected due date.

The two methods are also based on different ultrasound measurements. The Bergen Group recommends head circumference as the preferred parameter when determining fetal age, yet the Trondheim Group has never tested this method. The Bergen method calculates the fetal femur length as an average of three measurements, while the eSnurra uses the longest of three measurements. The two methods are nevertheless made the subjects of a comparison.

The Trondheim Group has altered the expected duration of pregnancy from 282 to 283 days in the eSnurra (3). If the Bergen method had also been tested for 283 days, the difference between the two methods’ term predictions would have been minimal (for this was indeed the object of compari-


Received 20 January 2015, first revision submitted 9 February 2015, accepted 27 March 2015. Editor: Lise Markved Helsingen.