Spasticity is a relatively common phenomenon in patients with a disease or injury of the central nervous system, and is a sign of damage to upper motor neurons. Up to 70% of patients with spinal cord injuries develop spasticity that may cause considerable disability (1–4). How the spasticity develops and the degree of spasticity depend on the location and extent of the injury (whether the injury is complete or incomplete). Spasticity may develop months or years after the acute injury and lead to increased loss of function and hospitalisation (3).

W. Lance defined spasticity as «a motor disorder characterised by a velocity-dependent increase in tonic stretch reflexes (muscle tone) with exaggerated tendon jerks, resulting from hyperexcitability of the stretch reflex» (5). The European working group EU-SPASM has defined spasticity as «disordered somatomotor control resulting from an upper motor neurone lesion, presenting as intermittent or sustained involuntary activation of muscles» (6). Upper motor neuron injury additionally causes parathesia, impaired fine motor skills and control of movements and increased fatigue due to movements (6, 7).

The main aim of the article is to provide an overview of the pathophysiology, clinical picture and treatment of spasticity, primarily in patients with spinal cord injuries. The article may help doctors who are involved in the treatment of spasticity in patients with spinal cord injuries.

Method.
The paper is based on literature searches in PubMed using the keyphrases «spasticity» and «spasticity AND spinal cord injury», and own clinical experience and research.

Interpretation.
Spasticity following a spinal cord injury must be assessed regularly. The treatment strategy depends on the degree of functional failure caused by the spasticity and its location.

Results.
Spasticity may be general, regional or localised. Factors such as an over-filled bladder, obstipation, acute infections, syringomyelia or bone fractures may substantially influence the degree of spasticity and must be determined. An assessment of the clinical and functional consequences for the patient is decisive before management. Active exercise, physiotherapy and peroral drugs are the simplest and cheapest options. Baclofen is the only centrally acting spasmyotic registered in Norway and is the first choice for peroral treatment. Benzodiazepines can also be used. The effect of the tablets is generally limited and there are often pronounced side effects. Local spasticity can be treated with botulinum toxin injections. The effect is time-limited and the treatment must be repeated. International guidelines recommend a combination of botulinum toxin injections and physiotherapy. In cases of regional spasticity, particularly in the lower limbs, intrathecal baclofen administered via a programmable pump may provide a continuous spasm-reducing effect. Orthopaedic surgery or neurosurgery may be an option for selected patients with intractable spasticity.

Main points
- Spasticity is a frequent complication after a spinal cord injury and may contribute to further functional impairment.
- Indications for treatment are based on assessment and measurement of patients’ loss of function and on clinical examination
- The most widely used medicinal treatment options are peroral or intrathecal baclofen and repeated intramuscular injections with botulinum toxin.

Spinal cord injuries are primarily in patients with SCI is multifactorial. A change in the excitability of various supraspinal inhibitory nerve paths used to be regarded as the main explanation. More recent research has shown a change in excitability in the actual motor neurons and interneurons as well (8). Spasticity may be general, regional or localised and associated with tetraparesis, hemiparesis, paraparesis or monoparesis. Spasticity may be caused by cerebral or spinal injuries (9). Spasticity is not a static phenomenon, and when untreated it can lead to secondary reorganisation of both the nervous system and the musculature (7). With serious spinal cord injury, paraparesis occurs which leads to adaptive shortening of muscles that change afferent input to the spinal cord. This exacerbates the spasticity and causes the development of contractures, abnormal positioning and further loss of function. This development can be influenced by early physical activity and medication (10, 11).

Light to moderate spasticity may have a positive effect on function. Among other things, spasticity may make it possible for patients with lower limb paresis to attain a standing function and more ease of movement, for example transfer from bed to chair (12). Light to moderate spasticity contributes to better circulation in the legs, thereby avoiding oedema and reducing the risk of development of deep vein thrombosis (13, 14).

Prounced spasticity may contribute to increased functional failure, contractures, incorrect posture, ulcers and pain. To avoid such negative developments, treatment should start as soon as possible (15).
Clinical assessment
When assessing spasticity, it is essential to have a thorough description of the extent and degree of the spasticity, plus its effect on the patient’s day-to-day functioning and quality of life (16). Spasticity can prevent transfer, affect the placing of legs in wheelchairs or cars, make manual hygiene difficult, cause problems with catheterisation and cause pain. If the patient cannot give a personal account of his or her problems, information should be obtained from those who know the patient best. When assessing different treatment options, an assessment of what it might be possible to achieve should also be included.

In the clinical examination it is important to assess the range of active and passive movements combined with any complications such as pain and/or abnormal limb positions. The most widely used assessment scales are the Ashworth Scale and the modified Ashworth Scale (17). With the Ashworth Scale, the resistance in the limb to passive movements is measured (18). This score says little about the loss of function that is related to spasticity and it is therefore not suitable for assessing the effect of treatment. There are a number of other scales, but they measure loss of function only to a limited degree and are therefore of limited clinical value (19–22). Individual assessment, preferably with the aid of video clips from before and after treatment, may be useful for assessing effectiveness. One important parameter will always be whether the aims of the treatment were fulfilled.

Electromyography (EMG) can be used to identify spastic muscles, but cannot be used to assess degree of spasticity or to determine an indication for treatment (8, 15).

Treatment
Spasticity can be influenced by a number of factors. Patients with SCI have a partial or complete loss of sensibility below the injury level. Increasing spasticity may be a reaction to disease or injury below the injury level. The first step is therefore to assess and treat all conditions that may lead to an exacerbation of the spasticity (exacerbating factors), such as urinary tract infection, pneumonia, obstruc-

Figure 1 Spasticity management, by degree and extent

Identification and treatment of exacerbating factors

Slight/moderate local/regional/general → Active exercise/physiotherapy

Moderate local/regional/general → Active exercise/physiotherapy

Moderate/pronounced local → Active exercise/physiotherapy

Moderate/pronounced regional, primarily in lower limbs → Active exercise/physiotherapy

Pronounced/intractable local → Active exercise/physiotherapy

Pronounced/intractable regional, general → Active exercise/physiotherapy

Peroral medication

Active exercise/physiotherapy

Botulinum toxin

Intrathecal baclofen

Orthopaedics

Neurosurgery

Spasticity

Tidsskr Nor Laegeforen nr. 8, 2012; 132

971

review article

REVIEW ARTICLE

Spasticity can be treated medicinally, and peroral medication is the first-line choice for general, regional and local spasticity (Fig. 1). Peroral medication has a limited effect, but is simple to administer. Baclofen tablets are the most widely used medication, and the only pure spasmyloytic drug registered in Norway. Baclofen is a GABA analogue and inhibits monosynaptic and polysynaptic spinal reflexes. Baclofen binds to GABA_B receptors that are linked to potassium and calcium channels both pre- and post-synaptically (24). The effect on spasticity was demonstrated in a controlled study of patients with SCI, while another study failed to show this effect (25, 26). The limited effect of baclofen is due to the fact that only a small portion of the active substance penetrates the blood-brain barrier (24). There are frequently side effects, with sedation, nausea, dizziness and difficulty in breathing as the most common (24). Side effects can be avoided to some extent by a slow stepwise increase of the dose. Epileptic seizures, psychosis and hyperthermia have been described in connection with sudden termination of the drug (27).

Another drug that may affect spasticity is tizanidine. This drug is not registered in Norway, and is therefore used only when baclofen is not effective. Tizanidine is an imidazoline derivative and a central ?-adrenergic agonist which inhibits the release of excitatory amino acids in spinal interneurons (24). A study demonstrated a pronounced muscle relaxant effect and suppression of polysynaptic reflexes in cases of complete SCI (28). Tizanidine has proved to be effective in placebo-controlled studies of patients with SCI (29, 30). Tizanidine and baclofen can be combined, but the drugs have the same potential side effects, and these may be more pronounced when the drugs are used in combination.

Benzodiazepines may be effective for reducing spasticity (24). The effect is a result of the GABA_A receptor system being affec-
Sedation and cognitive modulation are common side effects. When used concurrently with baclofen, benzodiazepines have an additive effect on spasticity, but must be administered in small doses because of similar side effects that may be more pronounced than with monotherapy (24). Benzodiazepines are often used in acute cases where a rapid effect is desired and side effects are a secondary consideration.

Clonidine and gabapentin may have the effect of reducing spasticity. Their use as spasmolytics in clinical practice is limited, and clinical studies of patients with SCI have not been performed (24, 30).

Cannabis products have been tested as medication for pain and spasticity, but the results of the studies have been conflicting. These products are not recommended for treating spasticity because of the narrow therapeutic range and risk of side effects and dependence (31).

Local injections with botulinum toxin
If spasticity is restricted to a few muscles or a delimited muscle group, injection with botulinum toxin may be a treatment option. Botulinum toxin is a product of *Clostridium botulinum* and blocks presynaptic release of acetyl choline from nerve terminals so that the connection between nerve terminal and muscle fibre is cut off for a period. Botulinum toxin weakens muscle tone, and paresis may thus become more pronounced. Seven immunologically distinct toxins are known (types A–G). Treatment with type A is most common (Botox, Xeomin, Dysport), but type B (Neurobloc) can also be used. A prerequisite for successful treatment is that a precise analysis and description of function is made in advance and an assessment made of what can be achieved by means of injection into particular muscles.

It must also be ensured that the injections are given into the correct muscles. The muscles can be identified by means of a one-channel EMG system, stimulator or ultrasound (8). The effect develops gradually in the course of 1–3 days after the injection, and maximum effect can be seen after 5–14 days. The effect wanes gradually after 12–16 weeks (24). Because of the risk of antibody development, the treatment can be repeated after three months at the earliest. Treatment with botulinum toxin must be limited to a few muscles, and no more than 50 units of Botox or Xeomin (150 units of Dysport) should be injected in the same place (33). The total dose per treatment should not exceed 500 units of Botox or Xeomin (1500 units of Dysport). The best effect is obtained by combining botulinum toxin treatment with physiotherapy (34, 35). Botulinum toxin treatment has a stable and predictable effect (36) which has been demonstrated in patients with SCI and a number of other conditions (36, 37). However, there are no randomised studies of the effect of botulinum toxin on persons with SCI. Randomised studies are beset by ethical challenges, because they would mean many injections of placebo into muscles.

Intrathecal infusion of baclofen

In cases of regional spasticity, particularly in the lower limbs, treatment with intrathecal infusion of baclofen via a programmable pump will be more effective than treatment with peroral medicines (8) (Fig. 2). Baclofen is pumped directly into the subarachnoid space by means of a programmable pump via a catheter system. Systemic effects are thereby reduced, and the risk of side effects is considerably lower (24). Before the baclofen pump can be implanted, the effect of intrathecal baclofen must be tested by administering a bolus dose to the patient via a normal spinal puncture needle, alternatively continuous infusion via an external pump. After implantation, the dose can be adjusted by a programmer, and the pump reservoir must be refilled with baclofen at regular intervals. The treatment can be administered over a long period, and the effect is sustained (38, 39). There is no absolute upper limit for the dosing. Daily doses of over 500 μg may cause side effects, first and foremost in the form of sedation.

In cases of extensive spasticity in all extremities, the effect of intrathecal baclofen on the upper limbs has proved to be only about 25% of the effect on the legs (40). In cases of spasticity in both upper and lower limbs, combination treatment with a baclofen pump for spasticity in the lower limbs and botulinum injections for spasticity in the upper limbs may be a good alternative.
Ellen Merete Hagen (born 1962)
Specialist in neurology and in social medicine. Junior Registrar at the Section for Clinical Neurophysiology, Neurology Department, Haukeland University Hospital. She has a PhD in epidemiology of traumatic spinal cord injury from the University of Bergen and is a post-doctoral fellow at the same institution. Conflicts of interest: None declared

Marit Granning (born 1955)
PhD and specialist in neurology. Senior Consultant at the Neurology Department, Haukeland University Hospital and Professor at the Institute of Clinical Medicine, University of Bergen. Conflicts of interest: None declared

References