- 1.
Griffin J, Treanor D. Digital pathology in clinical use: where are we now and what is holding us back? Histopathology 2017; 70: 134–45. [PubMed][CrossRef]
- 2.
Pallua JD, Brunner A, Zelger B et al. The future of pathology is digital. Pathol Res Pract 2020; 216: 153040. [PubMed][CrossRef]
- 3.
Den norske patologforening. Årsrapport 2020. https://www.legeforeningen.no/globalassets/foreningsledd/fagmedisinske-foreninger/den-norske-patologforening/arsrapport-dnp-2020_.pdf Lest 28.3.2022.
- 4.
Helsedirektoratet. Leger i kommunene og spesialisthelsetjenesten. Rapport 2020. https://www.helsedirektoratet.no/rapporter/leger-i-kommune-og-spesialisthelsetjenesten/Leger%20i%20kommunene%20og%20spesialisthelsetjenesten%20-%20rapport%202020.pdf/_/attachment/inline/9bcf5459-80e6-4716-ab00-1766ee0cc0db:ac1f2b4e2a8216bf8aa6246e843249ffc49721db/Leger%20i%20kommunene%20og%20spesialisthelsetjenesten%20-%20rapport%202020.pdf Lest 28.3.2022.
- 5.
Laurinavicius A, Laurinaviciene A, Dasevicius D et al. Digital image analysis in pathology: benefits and obligation. Anal Cell Pathol (Amst) 2012; 35: 75–8. [PubMed][CrossRef]
- 6.
Elmore JG, Longton GM, Carney PA et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 2015; 313: 1122–32. [PubMed][CrossRef]
- 7.
Fuchs TJ, Buhmann JM. Computational pathology: challenges and promises for tissue analysis. Comput Med Imaging Graph 2011; 35: 515–30. [PubMed][CrossRef]
- 8.
Zlobec I, Steele R, Michel RP et al. Scoring of p53, VEGF, Bcl-2 and APAF-1 immunohistochemistry and interobserver reliability in colorectal cancer. Mod Pathol 2006; 19: 1236–42. [PubMed][CrossRef]
- 9.
Bui MM, Riben MW, Allison KH et al. Quantitative Image Analysis of Human Epidermal Growth Factor Receptor 2 Immunohistochemistry for Breast Cancer: Guideline From the College of American Pathologists. Arch Pathol Lab Med 2019; 143: 1180–95. [PubMed][CrossRef]
- 10.
Butter R, 't Hart NA, Hooijer GKJ et al. Multicentre study on the consistency of PD-L1 immunohistochemistry as predictive test for immunotherapy in non-small cell lung cancer. J Clin Pathol 2020; 73: 423–30. [PubMed][CrossRef]
- 11.
Aeffner F, Wilson K, Martin NT et al. The Gold Standard Paradox in Digital Image Analysis: Manual Versus Automated Scoring as Ground Truth. Arch Pathol Lab Med 2017; 141: 1267–75. [PubMed][CrossRef]
- 12.
Aeffner F, Zarella MD, Buchbinder N et al. Introduction to Digital Image Analysis in Whole-slide Imaging: A White Paper from the Digital Pathology Association. J Pathol Inform 2019; 10: 9. [PubMed][CrossRef]
- 13.
Janowczyk A, Madabhushi A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J Pathol Inform 2016; 7: 29. [PubMed][CrossRef]
- 14.
Korbar B, Olofson AM, Miraflor AP et al. Deep Learning for Classification of Colorectal Polyps on Whole-slide Images. J Pathol Inform 2017; 8: 30. [PubMed][CrossRef]
- 15.
Nagpal K, Foote D, Liu Y et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digit Med 2019; 2: 48. [PubMed][CrossRef]
- 16.
Ström P, Kartasalo K, Olsson H et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol 2020; 21: 222–32. [PubMed][CrossRef]
- 17.
Steiner DF, MacDonald R, Liu Y et al. Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer. Am J Surg Pathol 2018; 42: 1636–46. [PubMed][CrossRef]
- 18.
Levine AB, Schlosser C, Grewal J et al. Rise of the Machines: Advances in Deep Learning for Cancer Diagnosis. Trends Cancer 2019; 5: 157–69. [PubMed][CrossRef]
- 19.
Maxmen A. Self-driving car dilemmas reveal that moral choices are not universal. Nature 2018; 562: 469–70. [PubMed][CrossRef]
- 20.
Felles nettløsning for spesialisthelsetjenesten. Interregionalt forum for digital patologi. https://spesialisthelsetjenesten.no/interregionalt-forum-for-digital-patologi Lest 10.1.2022.
- 21.
Svanes BJ, Kvien E, Aga E. Nye skjermar skal gjere det raskare å oppdage kreft. NRK 24.11.2021. https://www.nrk.no/vestland/nye-skjermar-skal-gjere-det-raskare-a-oppdage-kreft-1.15742102 Lest 10.1.2022.
- 22.
Mills AM, Gradecki SE, Horton BJ et al. Diagnostic Efficiency in Digital Pathology: A Comparison of Optical Versus Digital Assessment in 510 Surgical Pathology Cases. Am J Surg Pathol 2018; 42: 53–9. [PubMed][CrossRef]
- 23.
Mukhopadhyay S, Feldman MD, Abels E et al. Whole Slide Imaging Versus Microscopy for Primary Diagnosis in Surgical Pathology: A Multicenter Blinded Randomized Noninferiority Study of 1992 Cases (Pivotal Study). Am J Surg Pathol 2018; 42: 39–52. [PubMed][CrossRef]
- 24.
Skrede OJ, De Raedt S, Kleppe A et al. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet 2020; 395: 350–60. [PubMed][CrossRef]
()
Denne artikkelen ble publisert for mer enn 12 måneder siden, og vi har derfor stengt for nye kommentarer.
Kunstig intelligens er ikke kunstig
28.06.2022Både uttrykket "kunstig intelligens" og "maskinlæring" er villedende begreper. Begge forutsetter programmering. Alle beslutninger som tas "kunstig" er gjort på grunnlag av bedre - eller dårligere - algoritmer skrevet av programmerere - som igjen har fått…